Clay-Mediated meso-Tetraarylporphyrin Synthesis

Makoto Onaka,* Tomotaka Shinoda, Yusuke Izumi,* Ernest Nolen[†]

Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

^TDepartment of Chemistry, Colgate University, Hamilton, New York 13346-1398, U. S. A.

Abstract: *meso*-Tetraarylporphyrin syntheses from aromatic aldehydes and pyrrole in clay nanospaces were investigated. The clay-promoted porphyrin synthesis was also contrasted with the Lindsey BF_3 -catalyzed system.

It has been suggested that minerals serve as possible catalysts for porphyrin abiogenesis from pyrroles and aldehydes in the prebiotic era.¹ By analogy, mineral clays are expected to be promising candidates for promoting artificial porphyrin formations *in vitro*. In our previous paper,² we demonstrated that a certain type of clay, **K10** can satisfactorily give *meso*-tetraalkylporphyrins from aliphatic aldehydes and pyrrole since the *mesopore* structure of the clay forms a reaction template for macrocycle formation. Concerning *meso*-tetraphenylporphyrin (TPP) formations on clays, Pinnavaia and Cady first proved that condensations on montmorillonite surfaces of pyrrole with benzaldehyde in aqueous solution were carried out.³ Of synthetic interest is the preparation of *meso*-tetraarylporphyrins using clays and we report a survey of those results here.⁴

Scheme 1. Two-step porphyrin synthesis.

We conducted two synthetic steps in one pot: polymerization-cyclization to porphyrinogen from aldehyde and pyrrole, followed by oxidation with *p*-chloranil to porphyrin. A clay (1 g) was activated at 120 °C and below 0.5 Torr for 3 h in a 200-ml flask, and then N_2 was introduced. The flask was shielded from light with

Solid acid	Time (h)	TPP Yield (%)	
K10	2	30	
H-Mont	17	10	
H-Sapo	2	11 -	
SiO ₂ -Al ₂ O ₃	1	11	
H-Y	1	0	

Table 1. TPP Synthesis on Solid Acids.^{a)}

a) PhCHO (1 mmol, 10^{-2} M), Pyrrole (1 mmol, 10^{-2} M), Solid acid (1 g), in CH₂Cl₂.

 Table 2. meso-Tetraarylporphyrin Syntheses.^{a)}

	Yields (%)			
R	K10	BF3-OEt2	TFA	
o-Me	21	45 ^{b)}	31	
p-Me	20	28	29	
o-OMe	30	20 ^{b)}	trace	
p-OMe	trace	trace	trace	
o-Cl	3	28 ^{b)}	9	
p-Cl	9	trace	17	

a) Aldehyde (1 mmol,
$$10^{-2}$$
 M), Pyrrol (1 mmol, 10^{-2} M), K10 (1 g), BF₂•OEt₂ (0.1 mmol,

 10^{-3} M), TFA (0.5 mmol, 5×10^{-3} M), in CH₂Cl₂.

b) Data were quoted from Ref. 8.

foil. To the flask were added dry CH_2Cl_2 (95 ml) and then a CH_2Cl_2 (5 ml) solution of aromatic aldehyde (1 mmol). To the well-stirred mixture was introduced dropwise neat pyrrole (1 mmol) at room temperature, and the stirring was continued for 2 h. Solid *p*-chloranil (0.75 mmol) was added and the mixture was gently refluxed at 45 °C for 1 h. Solid materials were removed through a Celite pad and washed with CH_2Cl_2 (60 ml). The combined filtrate contained free base porphyrin, and was condensed and adsorbed on Florisil (2 g). The adsorbate was placed on the top of an Al_2O_3 (Merck aluminum Oxide 90, Activity II-III, 100 g) column and developed with hexane- CH_2Cl_2 . The porphyrin fraction was collected, condensed, charged on an alumina (100 g) column, and purified again. The purified porphyrin was dried at 80 °C and below 0.5 Torr for 6 h.

As acidic minerals we applied clays such as K10,⁵ H-Mont (proton-exchanged Kunipia F^{6}) and H-Sapo (proton-exchanged saponite), amorphous SiO₂-Al₂O₃ (Al₂O₃ content, 29%), and zeolite H-Y (proton-exchanged zeolite Y) to the reaction of benzaldehyde with pyrrole. As shown in Table 1, K10 is the best for *meso*-tetraphenylporphyrin synthesis owing to the characteristic mesopore structure² and strong acid property.⁷ H-Sapo and Al₂O₃ were not proper solid acids although they have mesopore structures. At least one gram of K10 per 1 mmol of benzaldehyde and pyrrole is necessary for attainment of satisfactory yield of TPP. CH₂Cl₂ and CHCl₃ are suitable solvents for the K10 system, and a trace amount of EtOH contained in CHCl₃ does not influence the TPP yield, while Lindsey reported that the presence of EtOH plays a crucial role in successful synthesis of porphyrins when BF₃•OEt₂ is employed as a catalyst.⁸

Figure 1 represents the influence of reactant concentration on TPP yield. Interestingly, 10^{-2} M is the optimum concentration for both the K10 and liquid acids like BF₃•OEt₂ and CF₃COOH (TFA).⁹

Table 2 summarizes the results on *meso*-tetraarylporphyrin syntheses using **K10** and the liquid acid catalysts. Under the influence of the three acids, substituted functionalities and their positions on a benzene ring sensitively affected the yields of *meso*-tetraarylporphyrins.¹⁰ In general, using **K10** in porphyrin synthesis has the advantage of easier purification of porphyrin products in the present two-step procedure compared with the use of homogeneous acids. Adsorption of polymerized by-products and oxidants enables us to easily separate porphyrins in a pure form from the messy tar mixtures.

We conducted porphyrinogen exchange reactions according to Lindsey's procedure⁹: Simultaneous reactions of benzaldehyde and pyrrole, and *o*-anisaldehyde and pyrrole, were performed on K10 in separate vessels. After 3 h, the two reaction mixtures were combined together, and allowed to react further under the influence of K10 at room temperature for 2 h, followed by oxidation with *p*-chloranil and analysis by chromatography. In contrast to the Lindsey BF₃-catalyzed reaction, we only obtained the two parent homosubstituted porphyrins in 30% yields, and did not detect any hybrid porphyrins, indicating that no scrambling took place between the two porphyrinogens after porphyrinogens once formed on K10.

Scheme 2. Porphyrinogen exchange experiment.

The present work was partially supported by a Grant-in-Aid for Scientific Research No. 04650754 from the Ministry of Education, Science and Culture.

References and Notes

- 1) Hodgson, G. W.; Baker, B. L. Nature, 1967, 216, 29.
- 2) Onaka, M.; Shinoda, T.; Izumi, Y.; Nolen, E. Chem. Lett., 1993, 117.
- 3) Cady, S.; Pinnavaia, T. J. Inorg. Chem., 1978, 17, 1501.
- We were kindly informed by Prof. Laszlo of their own results concerning meso-tetraarylporphyrin synthesis on FeCl₂-doped K10, Chem. Lett., in press.
- 5) K10 is a sulfuric acid-leached montmorillonite, and available from Aldrich and Fluka.
- 6) H-Mont was prepared by cation exchange from sodium ion-exchanged montmorilonite "Kunipia F" supplied by Kunimine Industries Co., Japan.
- 7) Onaka, M.; Hosokawa, Y.; Higuchi, K.; Izumi, Y. Tetrahedron Lett., in press.
- 8) Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828.
- Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827.
- 10) Spectral data: meso-Tetrakis(2-methylphenyl)porphyrin: ¹H NMR (CDCl₂) δ -2.63 (br s, NH), 2.00 (s, Me), 2.03 (s, Me), 2.04 (s, Me), 2.07 (s, Me), 2.08 (s, Me), 7.5-7.7 (m, Ar), 8.0-8.1 (m, Ar), 8.67 (s, pyrr); ¹³C NMR (CDCl₂) δ 21.2, 118.9 (C-meso), 124.3, 128.4, 129.3, 130.9 (C-β pyrr), 134.0, 139.7, 141.6. The resonance peak of α -carbons on pyrrole was too broad to be detected; UV-Vis (C₆H₆) λ 418, 513, 545, 590, 646 nm. meso-Tetrakis(4-methylphenyl)porphyrin: ¹H NMR (CDCl₂) δ -2.77 (br s, NH), 2.71 (s, Me), 7.56 (d, J=7.8 Hz, Ar), 8.11 (d, J=7.8 Hz, Ar), 8.86 (s, pyrr); ¹³C NMR (CDCl₂) δ 21.4, 120.2 (C-meso), 127.5, 131.2 (C-β pyrr), 134.7, 137.5, 139.5. The resonance peak of α-carbons on pyrrole was too broad to be detected; UV-Vis (C_6H_6) λ 420, 516, 550, 594, 651 nm. meso-Tetrakis(2methoxyphenyl)porphyrin: ¹H NMR (CDCl₂) δ -2.62 (br s, NH), 3.55 (s, OMe), 3.58 (s, OMe), 3.61 (s, OMe) 7.3-7.4 (m, Ar), 7.7-7.8 (m, Ar), 7.9-8.1 (m, Ar), 8.7 (s, pyrr); ¹³C NMR (CDCl₃) δ 55.9, 111.1, 115.7, 119.5 (C-meso), 129.9, 130.5 (C-β pyrr), 131.5, 135.9, 159.7. The resonance peak of α-carbons on pyrrole was too broad to be detected; UV-Vis ($C_{c}H_{6}$) λ 420, 513, 546, 591, 648 nm. *meso*-Tetrakis(2chlorophenyl)porphyrin: ¹H NMR (CDCl₃) δ -2.66 (br s, NH), 7.6-7.9 (m, Ar), 8.1-8.3 (m, Ar), 8.70 (s, pyrr); ¹³C NMR (CDCl₂) δ 116.8, 122.9, 125.4, 129.1, 130.0, 131.0, 135.5, 140.7. The resonance peak of α -carbons on pyrrole was too broad to be detected; UV-Vis (C₆H₆) λ 419, 512, 543, 589, 656 nm. meso-Tetrakis(4-chlorophenyl)porphyrin: ¹H NMR (CDCl₃) δ -2.86 (br s, NH), 7.75 (d, J=8.2 Hz, Ar), 8.14 (d, J=8.2 Hz, Ar), 8.85 (s, pyrr); ¹³C NMR (CDCl₂) δ 119.1 (C-meso), 127.2, 131.4 (C-β pyrr), 134.6, 135.7, 140.5. The resonance peak of α -carbons on pyrrole was too broad to be detected; UV-Vis (C_6H_6) λ 420, 515, 549, 591, 649 nm.
- 11) Data were quoted from Ref. 8.

(Received in Japan 24 December 1992)